Piezoelectric ultrasonic resonant micromotor with a volume of less than 1 mm3 for use in medical microbots

نویسندگان

  • Brett Watson
  • James R. Friend
  • Leslie Y. Yeo
  • Metin Sitti
چکیده

To improve on current methods of minimally invasive surgery, research is being carried out on systems that will permit procedures to be conducted on the micro-scale using remotely operated micro-robots. One of the major stumbling blocks to meeting this need has been the absence of a practical micromotor with a volume of less than 1 mm with which to drive these devices. To rectify this, we present a piezoelectric ultrasonic resonant micromotor with a volume of approximately 0.75 mm. The motor uses a novel helically cut stator that matches axial and torsional resonant frequencies, excited by a lead zirconate titanate element 0.03 mm in volume. An earlier motor using the same stator design, but a larger overall volume, achieved a start-up torque of 47 nNm and no load angular velocity of 830 rad/s. This performance is on the order necessary to propel a swimming microbot in small human veins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piezoelectric ultrasonic micro/milli-scale actuators

A growing demand for actuators with a volume of less than 1 mm3 has driven researchers to produce a varied range of micro/milli-scale designs. By examining the underlying physics of the actuator operation we are able to demonstrate why piezoelectric ultrasonic actuators have the greatest potential to meet this need. Moreover, it allows us to create a new classification system for piezoelectric ...

متن کامل

A study on axial and torsional resonant mode matching for a mechanical system with complex nonlinear geometries.

Making use of mechanical resonance has many benefits for the design of microscale devices. A key to successfully incorporating this phenomenon in the design of a device is to understand how the resonant frequencies of interest are affected by changes to the geometric parameters of the design. For simple geometric shapes, this is quite easy, but for complex nonlinear designs, it becomes signific...

متن کامل

An Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester

Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...

متن کامل

Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester

The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...

متن کامل

Triple Degree-of-Freedom Piezoelectric Ultrasonic Micromotor via Flexural-Axial Coupled Vibration

Actuators remain a limiting factor in robotics, especially in microrobotics where the power density of actuators is a problem. A 3 × 3 × 8.7 mm 3-axis piezoelectric ultrasonic micromotor system is described here in an effort to help solve this problem. Formed from 4 bulk lead zirconate titanate (PZT) thickness-polarized elements placed around the periphery of a rectangular rod, the stator is de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009